Axiom/FriCAS Clifford Algebra - Tests

Assuming that grassmann.spad has already been compiled (if not download from here) then the following tests are run by:

) read test2d.input

where test2d.input can be downloaded from here.

These results can be compared with the following test cases from Bertfried:

CliffordTestcases.pdf

Other tests:

Results

(1) -> )read test2d.input                                                             
-- you need to compile first time before running this                                       
-- )compile grassmann.spad                                                                  
)library CLIF                                                                               
                                                                                            
   CliffordAlgebra is now explicitly exposed in frame frame1                               
   CliffordAlgebra will be automatically loaded when needed from                           
      /home/martin/CLIF.NRLIB/CLIF                                                          
-- two D Euclidean space                                                                    
B1 := CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]])                                   
                                                                                            

   (1)  CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]])
                                                                 Type: Domain
-- two D Hyperbolic space                                                    
B2 := CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]])                    
                                                                             

   (2)  CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]])
                                                                 Type: Domain
-- non-orthogonal                                                            
B3 := CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-q,1]])       
                                                                             

   (3)  CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]])                          
                                                                 Type: Domain                       
-- with anti-symmetric bilinear part                                                                
B4 := CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,1/2+q],[1/2-q,0]])                       
                                                                                                    
                                                                                                    
   (4)                                                                                              
  CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]                     
  )                                                                                                 
                                                                 Type: Domain                       
--                                                                                                  
-- the following are results for 2D Euclidean space                                                 
-- wedge for 2D Euclidean space                                                                     
toTable(/\)$B1                                                                                      
                                                                                                    
                                                                                                    
        + 1      e      e    e e +                                                                  
        |         1      2    1 2|                                                                  
        |                        |                                                                  
        | e      0     e e    0  |                                                                  
        |  1            1 2      |                                                                  
   (5)  |                        |                                                                  
        | e    - e e    0     0  |                                                                  
        |  2      1 2            |                                                                  
        |                        |                                                                  
        |e e     0      0     0  |                                                                  
        + 1 2                    +                                                                  
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))                       
--                                                                                                  
-- regression for 2D Euclidean space                                                                
toTable(\/)$B1                                                                                      
                                                                                                    

        +0   0   0    1  +
        |                |
        |0   0   1    e  |
        |              1 |
   (6)  |                |
        |0  - 1  0    e  |
        |              2 |
        |                |
        |1  e    e   e e |
        +    1    2   1 2+
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- clifford multipication for 2D Euclidean space                             
toTable(*)$B1                                                                
                                                                             

        + 1      e      e    e e +
        |         1      2    1 2|
        |                        |
        | e      1     e e    e  |
        |  1            1 2    2 |
   (7)  |                        |
        | e    - e e    1    - e |
        |  2      1 2           1|
        |                        |
        |e e    - e     e    - 1 |
        + 1 2      2     1       +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- left contraction for 2D Euclidean space                                   
toTable(lc)$B1                                                               
                                                                             

        +1  e   e   e e +
        |    1   2   1 2|
        |               |
        |0  1   0    e  |
   (8)  |             2 |
        |               |
        |0  0   1   - e |
        |              1|
        |               |
        +0  0   0   - 1 +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- right contraction for 2D Euclidean space                                  
toTable(rc)$B1                                                               
                                                                             

        + 1     0    0    0 +
        |                   |
        | e     1    0    0 |
        |  1                |
   (9)  |                   |
        | e     0    1    0 |
        |  2                |
        |                   |
        |e e   - e   e   - 1|
        + 1 2     2   1     +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- dual for 2D Euclidean space                                               
toTable(~)$B1                                                                
                                                                             

         + 1    e    e    e e +
         |       1    2    1 2|
   (10)  |                    |
         |e e   e   - e   - 1 |
         + 1 2   2     1      +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- grade Involution for 2D Euclidean space                                   
toTable(gradeInvolution)$B1                                                  
                                                                             

         +1   e     e    e e +
         |     1     2    1 2|
   (11)  |                   |
         |1  - e   - e   e e |
         +      1     2   1 2+
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[1,0],[0,1]]))
--                                                                           
-- the following are results for 2D Hyperbolic space                         
-- wedge for 2D Hyperbolic space                                             
toTable(/\)$B2                                                               
                                                                             

         + 1      e      e    e e +
         |         1      2    1 2|
         |                        |
         | e      0     e e    0  |
         |  1            1 2      |
   (12)  |                        |
         | e    - e e    0     0  |
         |  2      1 2            |
         |                        |
         |e e     0      0     0  |
         + 1 2                    +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- regression for 2D Hyperbolic space                                        
toTable(\/)$B2                                                               
                                                                             

         +0   0   0    1  +
         |                |
         |0   0   1    e  |
         |              1 |
   (13)  |                |
         |0  - 1  0    e  |
         |              2 |
         |                |
         |1  e    e   e e |
         +    1    2   1 2+
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- clifford multipication for 2D Hyperbolic space                            
toTable(*)$B2                                                                
                                                                             

         + 1       e         e      e e +
         |          1         2      1 2|
         |                              |
         | e       0      1 + e e   - e |
         |  1                  1 2     1|
   (14)  |                              |
         | e    1 - e e      0       e  |
         |  2        1 2              2 |
         |                              |
         |e e      e        - e      1  |
         + 1 2      1          2        +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- left contraction for 2D Hyperbolic space                                  
toTable(lc)$B2                                                               
                                                                             

         +1  e   e   e e +
         |    1   2   1 2|
         |               |
         |0  0   1   - e |
   (15)  |              1|
         |               |
         |0  1   0    e  |
         |             2 |
         |               |
         +0  0   0    1  +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- right contraction for 2D Hyperbolic space                                 
toTable(rc)$B2                                                               
                                                                             

         + 1    0    0    0+
         |                 |
         | e    0    1    0|
         |  1              |
   (16)  |                 |
         | e    1    0    0|
         |  2              |
         |                 |
         |e e   e   - e   1|
         + 1 2   1     2   +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- dual for 2D Hyperbolic space                                              
toTable(~)$B2                                                                
                                                                             

         + 1     e    e   e e +
         |        1    2   1 2|
   (17)  |                    |
         |e e   - e   e    1  |
         + 1 2     1   2      +
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- grade Involution for 2D Euclidean space                                   
toTable(gradeInvolution)$B2                                                  
                                                                             

         +1   e     e    e e +
         |     1     2    1 2|
   (18)  |                   |
         |1  - e   - e   e e |
         +      1     2   1 2+
            Type: Matrix(CliffordAlgebra(2,Fraction(Integer),[[0,1],[1,0]]))
--                                                                           
-- the following are results for 2D non-orthogonal                           
-- wedge for 2D non-orthogonal space                                         
toTable(/\)$B3                                                               
                                                                             

         + 1      e      e    e e +
         |         1      2    1 2|
         |                        |
         | e      0     e e    0  |
         |  1            1 2      |
   (19)  |                        |
         | e    - e e    0     0  |
         |  2      1 2            |
         |                        |
         |e e     0      0     0  |
         + 1 2                    +
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- regression for 2D non-orthogonal space                                       
toTable(\/)$B3                                                                  
                                                                                

   (20)
            4     2          3
   [[0,0,0,q  + 2q  + 1 + (2q  + 2q)e e ],
                                     1 2  
          4     2          3               4             3
    [0,0,q  + 2q  + 1 + (2q  + 2q)e e ,(- q  + 1)e  + (2q  + 2q)e ],
                                   1 2            1              2  
          4     2            3                  3               4   
    [0,- q  - 2q  - 1 + (- 2q  - 2q)e e ,0,(- 2q  - 2q)e  + (- q  + 1)e ],
                                     1 2                1              2  

       4     2          3                4             3
     [q  + 2q  + 1 + (2q  + 2q)e e , (- q  + 1)e  + (2q  + 2q)e ,
                                1 2             1              2 
           3               4             5     3             4     2
      (- 2q  - 2q)e  + (- q  + 1)e , - 4q  - 8q  - 4q + (- 7q  - 6q  + 1)e e ]
                   1              2                                       1 2 
     ]                                                                        
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- clifford multipication for 2D non-orthogonal space                           
toTable(*)$B3                                                                   
                                                                                

         + 1        e           e              e e        +
         |           1           2              1 2       |
         |                                                |
         | e         1       q + e e       - q e  + e     |
         |  1                     1 2           1    2    |
   (21)  |                                                |
         | e    - q - e e        1         - e  - q e     |
         |  2          1 2                    1      2    |
         |                                                |
         |                                 2              |
         |e e   - q e  - e   e  - q e   - q  - 1 - 2q e e |
         + 1 2       1    2   1      2                 1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- left contraction for 2D non-orthogonal space                                 
toTable(lc)$B3                                                                  
                                                                                

         +1  e    e      e e     +
         |    1    2      1 2    |
         |                       |
         |0   1   q   - q e  + e |
         |                 1    2|
   (22)  |                       |
         |0  - q  1   - e  - q e |
         |               1      2|
         |                       |
         |                2      |
         +0   0   0    - q  - 1  +
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- right contraction for 2D non-orthogonal space                                
toTable(rc)$B3                                                                  
                                                                                

         + 1         0           0         0    +
         |                                      |
         | e         1           q         0    |
         |  1                                   |
         |                                      |
   (23)  | e        - q          1         0    |
         |  2                                   |
         |                                      |
         |                                 2    |
         |e e   - q e  - e   e  - q e   - q  - 1|
         + 1 2       1    2   1      2          +
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- dual for 2D non-orthogonal space                                             
toTable(~)$B3                                                                   
                                                                                

         + 1        e            e               e e        +
         |           1            2               1 2       |
   (24)  |                                                  |
         |                                   2              |
         |e e   - q e  + e   - e  - q e   - q  - 1 - 2q e e |
         + 1 2       1    2     1      2                 1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- grade Involution for 2D non-orthogonal space                                 
toTable(gradeInvolution)$B3                                                     
                                                                                

         +1   e     e    e e +
         |     1     2    1 2|
   (25)  |                   |
         |1  - e   - e   e e |
         +      1     2   1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[1,q],[-(q),1]]))
--                                                                              
-- the following are results for 2D with anti-symmetric bilinear part           
-- wedge for 2D part anti-symmetric bilinear space                              
toTable(/\)$B4                                                                  
                                                                                

         + 1      e      e    e e +
         |         1      2    1 2|
         |                        |
         | e      0     e e    0  |
         |  1            1 2      |
   (26)  |                        |
         | e    - e e    0     0  |
         |  2      1 2            |
         |                        |
         |e e     0      0     0  |
         + 1 2                    +
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--                                                                                          
-- regression for 2D part anti-symmetric bilinear space                                     
toTable(\/)$B4                                                                              
                                                                                            

   (27)
            4   1  2    1      3   1
   [[0,0,0,q  - - q  + -- + (2q  - - q)e e ],
                2      16          2    1 2  
          4   1  2    1      3   1            4    3   1      1
    [0,0,q  - - q  + -- + (2q  - - q)e e ,(- q  - q  + - q + --)e ],
              2      16          2    1 2              4     16  1  
          4   1  2    1        3   1              4    3   1      1 
    [0,- q  + - q  - -- + (- 2q  + - q)e e ,0,(- q  + q  - - q + --)e ],
              2      16            2    1 2                4     16  2  

       4   1  2    1      3   1             4    3   1      1
     [q  - - q  + -- + (2q  - - q)e e , (- q  - q  + - q + --)e ,
           2      16          2    1 2               4     16  1 
          4    3   1      1         5     3   1          4   3  2    1
      (- q  + q  - - q + --)e , - 4q  + 2q  - - q + (- 7q  + - q  + --)e e ]
                   4     16  2                4              2      16  1 2 
     ]                                                                      
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--                                                                                          
-- clifford multipication for 2D part anti-symmetric bilinear space                         
toTable(*)$B4                                                                               
                                                                                            

         + 1          e              e               e e        +
         |             1              2               1 2       |
         |                                                      |
         |                          1                   1       |
         | e          0         q + - + e e      (- q - -)e     |
         |  1                       2    1 2            2  1    |
   (28)  |                                                      |
         |            1                                 1       |
         | e    - q + - - e e        0           (- q + -)e     |
         |  2         2    1 2                          2  2    |
         |                                                      |
         |              1              1         2   1          |
         |e e    (- q + -)e     (- q - -)e    - q  + - - 2q e e |
         + 1 2          2  1           2  2          4       1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--                                                                                          
-- left contraction for 2D part anti-symmetric bilinear space
toTable(lc)$B4


         +1    e       e        e e     +
         |      1       2        1 2    |
         |                              |
         |                1         1   |
         |0     0     q + -  (- q - -)e |
         |                2         2  1|

   (29)  |                              |
         |         1                1   |
         |0  - q + -    0    (- q + -)e |
         |         2                2  2|
         |                              |
         |                       2   1  |
         |0     0       0     - q  + -  |
         +                           4  +
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--
-- right contraction for 2D part anti-symmetric bilinear space
toTable(rc)$B4


         + 1         0            0          0    +
         |                                        |
         |                          1             |
         | e         0          q + -        0    |
         |  1                       2             |
         |                                        |
   (30)  |              1                         |
         | e      - q + -         0          0    |
         |  2           2                         |
         |                                        |
         |             1            1        2   1|
         |e e   (- q + -)e   (- q - -)e   - q  + -|
         + 1 2         2  1         2  2         4+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--
-- dual for 2D part anti-symmetric bilinear space
toTable(~)$B4


         + 1        e            e               e e        +
         |           1            2               1 2       |
   (31)  |                                                  |
         |             1            1        2   1          |
         |e e   (- q - -)e   (- q + -)e   - q  + - - 2q e e |
         + 1 2         2  1         2  2         4       1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
--
-- grade Involution for 2D part anti-symmetric bilinear space
toTable(gradeInvolution)$B4


         +1   e     e    e e +
         |     1     2    1 2|
   (32)  |                   |
         |1  - e   - e   e e |
         +      1     2   1 2+
Type: Matrix(CliffordAlgebra(2,Expression(Fraction(Integer)),[[0,q+(1/2)],[(-q)+(1/2),0]]))
(33) ->

metadata block
see also:
Correspondence about this page

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.