As an alternative to simplicial complexes we can base our topology on squares rather than triangles.
Examples of Complexes
Solid Sphere - In this case 2 dimentional square: (1) -> sp := sphereSolid(2)$CubicalComplexFactory (1) (1..2,1..2) Type: FiniteCubicalComplex(Integer) |
|
Sphere Surface - In this case 2 dimentional square sides: (2) -> sps := sphereSurface(2)$CubicalComplexFactory (2) -(1..1,1..2) (2..2,1..2) (1..2,1..1) -(1..2,2..2) Type: FiniteCubicalComplex(Integer) |
|
Band - Cylinder without ends: (3) -> bnd := band()$CubicalComplexFactory (3) (1..1,1..2,1..2) (2..2,1..2,1..2) (1..2,1..1,1..2) (1..2,2..2,1..2) Type: FiniteCubicalComplex(Integer) |
|
Torus - (4) ->tor := torusSurface()$CubicalComplexFactory (4) (1..1,1..2,1..1,1..2) (1..1,1..2,2..2,1..2) (1..1,1..2,1..2,1..1) (1..1,1..2,1..2,2..2) (2..2,1..2,1..1,1..2) (2..2,1..2,2..2,1..2) (2..2,1..2,1..2,1..1) (2..2,1..2,1..2,2..2) (1..2,1..1,1..1,1..2) (1..2,1..1,2..2,1..2) (1..2,1..1,1..2,1..1) (1..2,1..1,1..2,2..2) (1..2,2..2,1..1,1..2) (1..2,2..2,2..2,1..2) (1..2,2..2,1..2,1..1) (1..2,2..2,1..2,2..2) Type: FiniteCubicalComplex(Integer) |
|
Möbius band: One boundary: not yet implemented |
|
Projective Plane - No boundaries, every edge is connected to two faces: (6) -> pp := projectiveSpace(2)$CubicalComplexFactory (5) (1..2,1..1,1..1,1..2,1..1) (1..2,1..1,1..1,1..1,1..2) (1..1,1..2,1..2,1..1,1..1) (1..1,1..2,1..1,1..2,1..1) (1..1,1..1,1..2,1..1,1..2) (1..2,1..2,2..2,1..1,1..1) (1..2,2..2,1..2,1..1,1..1) (2..2,1..2,1..2,1..1,1..1) (1..2,1..2,1..1,1..1,2..2) (1..2,2..2,1..1,1..1,1..2) (2..2,1..2,1..1,1..1,1..2) (1..2,1..1,1..2,2..2,1..1) (1..2,1..1,2..2,1..2,1..1) (2..2,1..1,1..2,1..2,1..1) (1..1,1..2,1..1,1..2,2..2) (1..1,1..2,1..1,2..2,1..2) (1..1,2..2,1..1,1..2,1..2) (1..1,1..1,1..2,1..2,2..2) (1..1,1..1,1..2,2..2,1..2) (1..1,1..1,2..2,1..2,1..2) Type: FiniteCubicalComplex(Integer) |
|
Further Information
For corresponding factory for simpectial complexes see page here.
For more general information about cubical complexes see page here .
My code for this page is on github here.