(1) -> )r axiom/directProduct
)set output algebra off
)set output mathml on
-- first calculate C2 x C3
C2 := FiniteGroup(2,[[1,2],[2,1]],["1","m"])
Type: Type
DP := directProduct([[1,2,3],[2,3,1],[3,1,2]],["1","r","rr"])$C2
Type: Type
toTable()$DP
1 |
r |
rr |
m |
mr |
mrr |
r |
rr |
1 |
mr |
mrr |
m |
rr |
1 |
r |
mrr |
m |
mr |
m |
mr |
mrr |
1 |
r |
rr |
mr |
mrr |
m |
r |
rr |
1 |
mrr |
m |
mr |
rr |
1 |
r |
Type: Table(6)
setGenerators([false,true,false,true,false,false])$DP
Type: Void
PDP := toPermutation()$DP
<(1 2 3)(4 5 6),(1 4)(2 5)(3 6)>
Type: PermutationGroup(Integer)
permutationRepresentation(PDP,6)
[
|
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
|
,
|
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
|
|
]
|
Type: List(Matrix(Integer))
-- now calculate C3 x C2
C3 := FiniteGroup(3,[[1,2,3],[2,3,1],[3,1,2]],["1","r","rr"])
Type: Type
DP := directProduct([[1,2],[2,1]],["1","m"])$C3
Type: Type
toTable()$DP
1 |
m |
r |
rm |
rr |
rrm |
m |
1 |
rm |
r |
rrm |
rr |
r |
rm |
rr |
rrm |
1 |
m |
rm |
r |
rrm |
rr |
m |
1 |
rr |
rrm |
1 |
m |
r |
rm |
rrm |
rr |
m |
1 |
rm |
r |
Type: Table(6)
setGenerators([false,true,true,false,false,false])$DP
Type: Void
PDP := toPermutation()$DP
<(1 2)(3 4)(5 6),(1 3 5)(2 4 6)>
Type: PermutationGroup(Integer)
permutationRepresentation(PDP,6)
[
|
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
|
,
|
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
|
|
]
|
Type: List(Matrix(Integer))
(13) ->
|