Direct Product
Perhaps the simplest way to combine (multiply) two sets (and therefore groups) is to use the Cartesian product as explained on this page. This product produces a set from the product:
g×h = {g, h}
So the result of this product is a different type of entity than the elements being multiplied, so the multiplication is not closed, and therefore does not represent a group. The external product makes this into a group because the inputs to the multiplication are also sets:
{y,z}{y',z' } = {y(z • y'),zy' z'}
where:
- × is the operation of the combined algebra.
- * is the operation of the group G.
- o is the operation of the group H which may be, or may not be, the same as *.
Example C2×C3
In order to try to understand this product of two groups lets try multiplying two very simple groups together, the simplest groups I can think of are C2 and C3.
C2
generator | cayley graph | table | permutation | representation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<m | m²> |
|
< ( 1 2 ) > |
|
C3
generator | cayley graph | table | permutation | representation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<r | r³> |
|
< ( 1 2 3 ) > |
|
direct product C3 × C2
This gives :
generator | cayley graph | table | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<m,r | m²,r³,rm=mr> |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
permutation | representation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
<(1 2 3)(4 5 6),(1 4)(2 5)(3 6)> |
|
Note that, in addition to applying both the generators and constrains for the original groups we have had to apply an additional constraint: rm=mr. If we had not done this we would have the infinite free product.
Generating a Bicrossed Product using a Program
We can use a computer program to generate these groups, here I have used Axiom/FriCAS which is described here.