Maths - Matrix Code

individual matrix methods

complete sftransform class

This class can represent a 3D transform which can scale, translate and rotate a 3d vector space. The transform is held as a 4x4 matrix. The class has methods to add, subtract and multiply with other matrices. Also many other methods, including the ability to load and save to from VRML and x3d.

There are 3 versions available depending on language:

See also the following related classes

The full source code is availible on Sourceforge here:

A Java Implementation of Matrix

Matrix Add

  public final void add(Matrix4d m1,Matrix4d m2) {
m00 = m1.m00 + m2.m00;
m01 = m1.m01 + m2.m01;
m02 = m1.m02 + m2.m02;
m03 = m1.m03 + m2.m03;
m10 = m1.m10 + m2.m10;
m11 = m1.m11 + m2.m11;
m12 = m1.m12 + m2.m12;
m13 = m1.m13 + m2.m13;
m20 = m1.m20 + m2.m20;
m21 = m1.m21 + m2.m21;
m22 = m1.m22 + m2.m22;
m23 = m1.m23 + m2.m23;
m30 = m1.m30 + m2.m30;
m31 = m1.m31 + m2.m31;
m32 = m1.m32 + m2.m32;
m33 = m1.m33 + m2.m33;
}

Scalar Multiplication


public final void scale(double scale) {
m00 *= scale;
m01 *= scale;
m02 *= scale;
m03 *= scale;
m10 *= scale;
m11 *= scale;
m12 *= scale;
m13 *= scale;
m20 *= scale;
m21 *= scale;
m22 *= scale;
m23 *= scale;
m30 *= scale;
m31 *= scale;
m32 *= scale;
m33 *= scale;
}

Matrix Multiplication

4x4 matrix:

  public final void mul(Matrix4d m1,Matrix4d m2) {
m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30;
m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31;
m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32;
m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33;
m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30;
m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31;
m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32;
m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33;
m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30;
m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31;
m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32;
m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33;
m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30;
m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31;
m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32;
m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33;
}

3x3 matrix:

  public final void mul(Matrix3d m1,Matrix3d m2) {
m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
}

Rotate


 public final void rotX(double angle) {
// Assuming the angle is in radians. (?)
double c = Math.cos(angle);
double s = Math.sin(angle);
m00 = 1.0;
m01 = 0.0;
m02 = 0.0;
m10 = 0.0;
m11 = c;
m12 = s;
m20 = 0.0;
m21 = -s;
m22 = c;
}

public final void rotY(double angle) {
// Assuming the angle is in radians. (?)
Double c = Math.cos(angle);
double s = Math.sin(angle);
m00 = c;
m01 = 0.0;
m02 = -s;
m10 = 0.0;
m11 = 1;
m12 = 0.0;
m20 = s;
m21 = 0.0;
m22 = c;
}

public final void rotZ(double angle) {
// Assuming the angle is in radians. (?)
Double c = Math.cos(angle);
double s = Math.sin(angle);
m00 = c;
m01 = s;
m02 = 0.0;
m10 = -s;
m11 = c;
m12 = 0.0;
m20 = 0.0;
m21 = 0.0;
m22 = 1.0;
}

Invert


 public final void invert(Matrix4d m1) {
m00 = m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33;
m01 = m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33;
m02 = m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33;
m03 = m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23;
m10 = m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33;
m11 = m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33;
m12 = m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33;
m13 = m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23;
m20 = m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33;
m21 = m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33;
m22 = m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33;
m23 = m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23;
m30 = m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32;
m31 = m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32;
m32 = m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32;
m33 = m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22;
scale(1/m1.determinant());
}To look at more general C++ code see below

determinant


public final double determinant() { double value; value = m03 * m12 * m21 * m30-m02 * m13 * m21 * m30-m03 * m11 * m22 * m30+m01 * m13 * m22 * m30+ m02 * m11 * m23 * m30-m01 * m12 * m23 * m30-m03 * m12 * m20 * m31+m02 * m13 * m20 * m31+ m03 * m10 * m22 * m31-m00 * m13 * m22 * m31-m02 * m10 * m23 * m31+m00 * m12 * m23 * m31+ m03 * m11 * m20 * m32-m01 * m13 * m20 * m32-m03 * m10 * m21 * m32+m00 * m13 * m21 * m32+ m01 * m10 * m23 * m32-m00 * m11 * m23 * m32-m02 * m11 * m20 * m33+m01 * m12 * m20 * m33+ m02 * m10 * m21 * m33-m00 * m12 * m21 * m33-m01 * m10 * m22 * m33+m00 * m11 * m22 * m33; return value; }To look at more general C++ code see below

The following C++ matrix are more optimised than the java code above and can be used for any dimension matrix, It relies on templates, it would also be useful to overload the +, - ,* and / operators for matrix arithmetic. This code is written by sudeep das ( das_sudeep@hotmail.com ) who kindly allowed me to include it here.

template < int order>
         class Matx {protected: double mtx[ order][ order];public:
  double &element( int i, int j) { return mtx[ i][ j]; }
  const double &element( int i, int j) const { return mtx[ i][ j]; }
  ///////////////////////////////////////
  Matx<order> multiply( const Matx &mat) const  Matx< order> a;
  for ( int i = 0; i < order; ++i)
    for ( int l = 0; l < order; ++l) {
      double &x = a.element( i, l) = 0;
        for ( int j = 0; j < order; ++j)
         x += element( i, j) * mat.element( j, l);
    }
    return a;
   }
   
   //////////////////////////////////////////
   template <int order>
   Matx<order> Matx<order>::inverse( void) const {
     Matx<order> b;
     for ( int i = 0; i < order; ++i)
       for ( int j = 0; j < order; ++j) {
         int sgn = ( (i+j)%2) ? -1 : 1;
         b.element( i, j) = sgn * MatxCofactor< order -1>( *this, i,j).determinant();
       }
       b.transpose();
       b /= determinant();
       return b;
    } //////////////////////////////////////////
   template <int order>
   double Matx<order>::determinant( void) const {
     double d = 0;
     for ( int i = 0; i < order; ++i) {
       int sgn = ( i % 2) ? -1 : 1;
       Matx<order -1> cf = MatxCofactor< order -1>( *this, i, 0);
       d += sgn * element( i, 0) * cf.determinant();
     }
     return d;
   }
 //////////////////////////////////////////
   void transpose( void) {
     for ( int i = 0; i < order; ++i) {
       for ( int j = i +1; j < order; ++j)
         ::swap( &element( i, j), &element( j, i)); // need a swap function not provided here
     }
   }
};////////////////////////////////////////////////////
template <int corder>
class MatxCofactor : public Matx< corder> {
  public:
  MatxCofactor( const Matx< corder+1> &a, int aI, int aJ) {
    for ( int i = 0, k = 0; i < ( corder+1); ++i) {
      if ( i != aI) {
        for ( int j = 0, l = 0; j < ( corder+1); ++j) {
          if ( j != aJ) {
            element( k, l) = a.element( i, j);
            ++l;
          }
        }
        ++k;
      }
    }
  }
};

metadata block
see also:

 

Correspondence about this page david

Book Shop - Further reading.

Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them.

cover Mathematics for 3D game Programming - Includes introduction to Vectors, Matrices, Transforms and Trigonometry. (But no euler angles or quaternions). Also includes ray tracing and some linear & rotational physics also collision detection (but not collision response).

Terminology and Notation

Specific to this page here:

 

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.