Maths - Sparodic Groups

These are very large groups, for example the smallest Mathieu11 has order (size) of 7920 so a Cayley table for this group would have 7920 rows and 7920 columns. Therefore I will not show these tables in full.

Sparodic Groups

Designation Other terms used Name Order (number of elements)
M11   Mathieu11 7920 = 24*32*5*11
M12   Mathieu12 95040 = 26*33*5*11
M22   Mathieu22 443520 = 27*32*5*7*11
M23   Mathieu23 10200960 = 27*32*5*7*11*23
M24   Mathieu24 244823040 = 210*33*5*7*11*23
J1 HJ or HJM   175560 = 23*3*5*7*11*19
J2   Janko2 604800 = 27*33*52*7
J3     27*35*5*17*19
J4     221*113*33*23*29*31*37*43
HS   Higman-Sims 29*32*53*7*11
McL   McLaughlin 27*36*53*7*11
He F7 Held 210*33*52*7*17
Ru   Rudvalis 214*33*53*7*13*29
Suz   Suzuki 213*37*52*7*11*13
O'N   O'Nan 29*34*5*73*11*19*31
Ly   Lyons 28*37*56*7*11*31*37*67
Co1   Conway  
Co2      
Co3      
Fi22   Fischer  
Fi23      
Fi24 Fi24′    
HN F5 Harada-Norton  
Th F3 Thompson  
B F2 Baby Monster  
M F1 Fischer-Griess Monster  

Generating a Sparodic Groups using a Program

We can use a computer program to generate these groups, here I have used Axiom/FriCAS which is described here.

m11 := mathieu11()
                  
                  
   (1)  <(1 10)(2 8)(3 11)(5 7),(1 4 7 6)(2 11 10 9)>
                                          Type: PermutationGroup(Integer)
order(m11)        
                  
                  
   (2)  7920      
                                                    Type: PositiveInteger
m12 := mathieu12()
                  
                  
   (3)  <(1 2 3 4 5 6 7 8 9 10 11),(11 12)(1 6 5 8 3 7 4 2 9 10)>
                                          Type: PermutationGroup(Integer)
order(m12)        
                  

   (4)  95040
                                                    Type: PositiveInteger
m22 := mathieu22()

   (5)
   <  
       (1 2 4 8 16 9 18 13 3 6 12)(5 10 20 17 11 22 21 19 15 7 14)
    ,
       (3 15)(10 16)(1 2 6 18)(5 8 21 13)(7 9 20 12)(11 19 14 22)
     >
                                          Type: PermutationGroup(Integer)
order(m22)


   (6)  443520
                                                    Type: PositiveInteger
m23 := mathieu23()


   (7)
   <
       (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
    ,
       (2 16 9 6 8)(3 12 13 18 4)(7 17 10 11 22)(14 19 21 20 15)
     >
                                          Type: PermutationGroup(Integer)
order(m23)


   (8)  10200960
                                                    Type: PositiveInteger
m24 := mathieu24()


   (9)
   <
       (1 16 10 22 24)(2 12 18 21 7)(4 5 8 6 17)(9 11 13 19 15)
    ,
       (2 10)(23 24)(1 22 13 14 6 20 3 21 8 11)(4 15 18 17 16 5 9 19 12 7)
     >
                                          Type: PermutationGroup(Integer)
order(m24)


   (10)  244823040
                                                    Type: PositiveInteger
j2 := janko2()


   (11)
   <
       (2 3 4 5 6 7 8)(9 10 11 12 13 14 15)(16 17 18 19 20 21 22)
         (23 24 25 26 27 28 29)(30 31 32 33 34 35 36)(37 38 39 40 41 42 43)
         (44 45 46 47 48 49 50)(51 52 53 54 55 56 57)(58 59 60 61 62 63 64)
         (65 66 67 68 69 70 71)(72 73 74 75 76 77 78)(79 80 81 82 83 84 85)
         (86 87 88 89 90 91 92)(93 94 95 96 97 98 99)
    ,
       (5 66 49 59 61)(10 78 88 29 12)
         (1 74 83 21 36 77 44 80 64 2 34 75 48 17 100)
         (3 15 31 52 19 11 73 79 26 56 41 99 39 84 90)
         (4 57 86 63 85 95 82 97 98 81 8 69 38 43 58)
         (6 68 89 94 92 20 13 54 24 51 87 27 76 23 67)
         (7 72 22 35 30 70 47 62 45 46 40 28 65 93 42)
         (9 71 37 91 18 55 96 60 16 53 50 25 32 14 33)
     >
                                          Type: PermutationGroup(Integer)
order(j2)


   (12)  604800
                                                    Type: PositiveInteger
(13) ->

where:


metadata block
see also:

 

Correspondence about this page

Book Shop - Further reading.

Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them.

flag flag flag flag flag flag Symmetry and the Monster - This is a popular science type book which traces the history leading up to the discovery of the largest symmetry groups.

Terminology and Notation

Specific to this page here:

 

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.