The bases are the vectors e1, e2, e3, e4 and e5, however the higher level products such as: e1^e2, e3^e1, e2^e3, e1^e4, e4^e2 and e3^e4 is also as a basis for the bivectors.
The question is what order do we choose for this (which is equivalent to saying what sign do we use since e1^e2=-e2^e1).
The methodology used for choosing the order of these indexes is explained here.
We calculate the psuedoscalar by drawing the
matrix formed by putting the basis vectors side-by-side, then taking
its minor by removing the row associated with its own coordinate type
and removing the column of the basis vector not associated with.
We have to be very careful with signs as the sign
alternates with terms as follows:
e1x |
e2x |
e3x |
e4x |
e5x |
e1y |
e2y |
e3y |
e4y |
e5y |
e1z |
e2z |
e3z |
e4z |
e5z |
e1w |
e2w |
e3w |
e4w |
e5w |
e1v |
e2v |
e3v |
e4v |
e5v |
|
=e1x* |
e2y |
e3y |
e4y |
e5y |
e2z |
e3z |
e4z |
e5z |
e2w |
e3w |
e4w |
e5w |
e2v |
e3v |
e4v |
e5v |
|
-e2x* |
e1y |
e3y |
e4y |
e5y |
e1z |
e3z |
e4z |
e5z |
e1w |
e3w |
e4w |
e5w |
e1v |
e3v |
e4v |
e5v |
|
+e3x* |
e1y |
e2y |
e4y |
e5y |
e1z |
e2z |
e4z |
e5z |
e1w |
e2w |
e4w |
e5w |
e1v |
e2v |
e4v |
e5v |
|
-e4x* |
e1y |
e2y |
e3y |
e5y |
e1z |
e2z |
e3z |
e5z |
e1w |
e2w |
e3w |
e5w |
e1v |
e2v |
e3v |
e5v |
|
+e5x* |
e1y |
e2y |
e3y |
e4y |
e1z |
e2z |
e3z |
e4z |
e1w |
e2w |
e3w |
e4w |
e1v |
e2v |
e3v |
e4v |
|
To choose tri-vectors for 5D multivectors we start with the psudoscalar e1^e2^e3^e4^e5 which represents the whole determinant. We then split it up, taking into account the sign, as above:
e1^e2^e3^e4^e5 = e1 * e2^e3^e4^e5 - e2 * e1^e3^e4^e5 + e3 * e1^e2^e4^e5 - e4 * e1^e2^e3^e5 + e5 * e1^e2^e3^e4
Where the sign is negative then we invert the order, which gives the basis tri-vectors as follows:
- e2^e3^e4^e5 is the minor of e1
- -e1^e3^e4^e5 is the minor of e2
- e1^e2^e4^e5 is the minor of e3
- -e1^e2^e3^e5 is the minor of e4
- e1^e2^e3^e4 is the minor of e5
In order to remove the minus terms from the 2nd and 4th terms we can just swap any two of the terms, but which two do we swap?
how about:
- e2^e3^e4^e5 is the minor of e1
- e3^e1^e4^e5 is the minor of e2
- e1^e2^e4^e5 is the minor of e3
- e1^e2^e5^e3 is the minor of e4
- e1^e2^e3^e4 is the minor of e5
I'm not an expert at suduko, so I cant get one number in each row, but the above seems to have a patern. Can anyone tell me a better way to choose the order?
What are the properties of these under the dual function?
So this is the best I can do to get the order for the quad-vectors.
What about the bivectors and tri-vectors? we can reduce the deteminant in two stages, but how does that correspond to the clifford algebra functions?
I think I will try finding the minors of the above tri-vectors as follows:
The minor of e1 |
The minor of e2 |
The minor of e3 |
The minor of e4 |
The minor of e5 |
e2^e3^e4^e5 |
e1^e3^e4^e5 |
e1^e2^e4^e5 |
e1^e2^e3^e5 |
e1^e2^e3^e4 |
|
Now take the minor of e1:
which gives: e3^e4^e5 |
Now take the minor of e1:
which gives: -e2^e4^e5 |
Now take the minor of e1:
which gives: e2^e3^e5 |
Now take the minor of e1:
which gives: -e2^e3^e4 |
Now take the minor of e2:
which gives: e3^e4^e5 |
|
Or take the minor of e2:
which gives: e1^e4^e5 |
Or take the minor of e2:
which gives: -e1^e3^e5 |
Or take the minor of e2:
which gives: e1^e3^e4 |
Or take the minor of e3:
which gives: -e2^e4^e5 |
Or take the minor of e3:
which gives: e1^e4^e5 |
|
Or take the minor of e3:
which gives: e1^e2^e5 |
Or take the minor of e3:
which gives: -e1^e2^e4 |
Or take the minor of e4:
which gives: e2^e3^e5 |
Or take the minor of e4:
which gives: -e1^e3^e5 |
Or take the minor of e4:
which gives: e1^e2^e5 |
|
Or take the minor of e4:
which gives: e1^e2^e3 |
Or take the minor of e5:
which gives: -e2^e3^e4 |
Or take the minor of e5:
which gives: e1^e3^e4 |
Or take the minor of e4:
which gives: -e1^e2^e4 |
Or take the minor of e5:
which gives: e1^e2^e3 |
|
so to summarise:
minor of e1 followed by e2 gives: |
e1^e2 |
e3^e4^e5 |
(e1^e2)(e3^e4^e5) |
minor of e1 followed by e3 gives: |
e1^e3 |
-e2^e4^e5 |
-(e1^e3)(e2^e4^e5) |
minor of e1 followed by e4 gives: |
e1^e4 |
e2^e3^e5 |
(e1^e4)(e2^e3^e5) |
minor of e1 followed by e5 gives: |
e1^e5 |
-e2^e3^e4 |
-(e1^e5)(e2^e3^e4) |
minor of e2 followed by e1 gives: |
e2^e1 |
-e3^e4^e5 |
-(e2^e1)(e3^e4^e5) |
minor of e2 followed by e3 gives: |
e2^e3 |
e1^e4^e5 |
(e2^e3)(e1^e4^e5) |
minor of e2 followed by e4 gives: |
e2^e4 |
-e1^e3^e5 |
-(e2^e4)(e1^e3^e5) |
minor of e2 followed by e5 gives: |
e2^e5 |
e1^e3^e4 |
(e2^e5)(e1^e3^e4) |
minor of e3 followed by e1 gives: |
e3^e1 |
e2^e4^e5 |
(e3^e1)(e2^e4^e5) |
minor of e3 followed by e2 gives: |
e3^e2 |
-e1^e4^e5 |
-(e3^e2)(e1^e4^e5) |
minor of e3 followed by e4 gives: |
e3^e4 |
e1^e2^e5 |
(e3^e4)(e1^e2^e5) |
minor of e3 followed by e5 gives: |
e3^e5 |
-e1^e2^e4 |
-(e3^e5)(e1^e2^e4) |
minor of e4 followed by e1 gives: |
e4^e1 |
-e2^e3^e5 |
-(e4^e1)(e2^e3^e5) |
minor of e4 followed by e2 gives: |
e4^e2 |
e1^e3^e5 |
(e4^e2)(e1^e3^e5) |
minor of e4 followed by e3 gives: |
e4^e3 |
-e1^e2^e5 |
-(e4^e3)(e1^e2^e5) |
minor of e4 followed by e5 gives: |
e4^e5 |
e1^e2^e3 |
(e4^e5)(e1^e2^e3) |
minor of e5 followed by e1 gives: |
e5^e1 |
e2^e3^e4 |
(e5^e1)(e2^e3^e4) |
minor of e5 followed by e2 gives: |
e5^e2 |
-e1^e3^e4 |
-(e5^e2)(e1^e3^e4) |
minor of e5 followed by e3 gives: |
e5^e3 |
e1^e2^e4 |
(e5^e3)(e1^e2^e4) |
minor of e5 followed by e4 gives: |
e5^e4 |
-e1^e2^e3 |
-(e5^e4)(e1^e2^e3) |
So the full multivector and its dual is:
Ar |
dual(Ar) = Ar* = e12345 Ar |
1 |
e12345 |
e1 |
e12345e1= e2345 |
e2 |
e12345e2 = e3145 |
e3 |
e12345e3 = e1245 |
e4 |
e12345e4 = e1253 |
e5 |
e12345e5 = e1234 |
e12 |
e12345e12= -e345 |
e13 |
e12345e13= -e425 |
e14 |
e12345e14= -e235 |
e15 |
e12345e15= -e324 |
e23 |
e12345e23= -e145 |
e24 |
e12345e24= -e315 |
e25 |
e12345e25= -e134 |
e34 |
e12345e34= -e125 |
e35 |
e12345e35= -e214 |
e45 |
e12345e45=-e123 |
e123 |
e12345e123= -e45 |
e214 |
e12345e214= -e35 |
e125 |
e12345e125= -e34 |
e134 |
e12345e134= -e25 |
e315 |
e12345e315= -e24 |
e145 |
e12345e145= -e23 |
e324 |
e12345e324= -e15 |
e235 |
e12345e235= -e14 |
e425 |
e12345e425= -e13 |
e345 |
e12345e345=-e12 |
e1234 |
e12345e1234= e5 |
e1253 |
e12345e1253= e4 |
e1245 |
e12345e1245= e3 |
e3145 |
e12345e3145= e2 |
e2345 |
e12345e2345= e1 |
e12345 |
e12345e12345= 1 |
This site may have errors. Don't use for critical systems.