Choosing bases - 4D
I have included a requirement that the bases for the 4D algebras are a superset of the 3D case, so that we can more easily derive G(3,1,0) - for space-time, and G(3,0,1) - for dual quaternions. I'm hoping that this will underpin the pages on dual quaternions and motors.
I have also included the requirement that the reversal is positive.
This gives the following bases:
e |
one scalar |
e1 e2 e3 e4 |
4 vector bases |
e12 e23 e31 e42 e41 e43 |
6 bivectors |
e123 e142 e134 e324 |
4 trivectors |
e1234 |
one psudoscalar |
I have put my earlier attempts to generate the bases on this page.
Do the basis vectors square to +ve, -ve or zero?
Lets try out the following combinations:
category |
|
isomorphic to |
G 4,0,0 |
All vectors square to +ve. Like adding another dimension to 3D space |
|
G+4,0,0 |
Even subalgebra of G 4,0,0 |
|
G 3,1,0 |
3 Vectors square to +ve and one to -ve. For instance 3 vectors for space and one for time. |
|
G+3,1,0 |
Even subalgebra of G 3,1,0 |
|
G 1,3,0 |
The opposite way round to above, that is 3 Vectors square to -ve and one to +ve. This is because its usual in space-time for space to square to -ve and time to square to +ve. |
|
G+1,3,0 |
Even subalgebra of G 1,3,0 |
|
G 3,0,1 |
3 Vectors square to +ve and one to zero. |
|
G+3,0,1 |
Even subalgebra of G 3,0,1. Represents the same algebra as dual quaternions |
dual quaternions |
The multiplication table for each of these is derived below:
Vectors square to +ve: G 4,0,0
This corresponds to normal 3 dimensional space with an additional dimension making 4. It can be fully defined by the multiplication table as follows:
a*b |
b.e |
b.e1 |
b.e2 |
b.e3 |
b.e4 |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e123 |
b.e142 |
b.e134 |
b.e324 |
b.e1234 |
a.e |
e |
e1 |
e2 |
e3 |
e4 |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e123 |
e142 |
e134 |
e324 |
e1234 |
a.e1 |
e1 |
1 |
e12 |
-e31 |
-e41 |
e2 |
-e3 |
e123 |
e4 |
e142 |
-e134 |
-e23 |
-e42 |
e43 |
e1234 |
e324 |
a.e2 |
e2 |
-e12 |
1 |
e23 |
-e42 |
-e1 |
e123 |
e3 |
e142 |
-e4 |
e324 |
e31 |
e41 |
e1234 |
-e43 |
e134 |
a.e3 |
e3 |
e31 |
-e23 |
1 |
-e43 |
e123 |
e1 |
-e2 |
e134 |
e324 |
e4 |
-e12 |
e1234 |
-e41 |
e42 |
-e142 |
a.e4 |
e4 |
e41 |
e42 |
e43 |
1 |
-e142 |
e134 |
e324 |
-e4 |
e2 |
-e3 |
e1234 |
e12 |
e31 |
e23 |
-e123 |
a.e12 |
e12 |
-e2 |
e1 |
e123 |
-e142 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e3 |
-e4 |
e324 |
-e134 |
e43 |
a.e31 |
e31 |
e3 |
e123 |
-e1 |
e134 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e2 |
-e324 |
-e4 |
-e142 |
e42 |
a.e23 |
e23 |
e123 |
-e3 |
e2 |
e324 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e1 |
e134 |
e142 |
-e4 |
e41 |
a.e41 |
e41 |
-e4 |
e142 |
e134 |
e1 |
e42 |
-e43 |
-e1234 |
-1 |
e12 |
e31 |
e324 |
e2 |
-e3 |
e123 |
-e23 |
a.e42 |
e42 |
e142 |
e4 |
e324 |
-e2 |
-e41 |
-e1234 |
e43 |
-e12 |
-1 |
e23 |
-e134 |
e1 |
-e123 |
-e3 |
e31 |
a.e43 |
e43 |
-e134 |
e324 |
-e4 |
e3 |
-e1234 |
e41 |
-e42 |
-e31 |
-e23 |
-1 |
-e142 |
e123 |
e1 |
-e2 |
-e12 |
a.e123 |
e123 |
-e23 |
-e31 |
-e12 |
-e1234 |
e3 |
e2 |
e1 |
-e324 |
e134 |
e142 |
-1 |
-e43 |
-e42 |
-e41 |
e4 |
a.e142 |
e142 |
-e42 |
e41 |
-e1234 |
e12 |
-e4 |
e324 |
-e134 |
e2 |
e1 |
-e123 |
-e43 |
-1 |
e23 |
-e31 |
e3 |
a.e134 |
e134 |
e43 |
-e1234 |
-e41 |
e31 |
-e324 |
-e4 |
e142 |
-e3 |
e123 |
e1 |
e42 |
-e23 |
-1 |
e12 |
e2 |
a.e324 |
e324 |
-e1234 |
-e43 |
e42 |
e23 |
e134 |
e142 |
-e4 |
-e123 |
-e3 |
-e2 |
e41 |
e31 |
-e12 |
-1 |
e1 |
a.e1234 |
e1234 |
-e324 |
-e134 |
e142 |
e123 |
e43 |
e42 |
e41 |
-e23 |
e31 |
-e12 |
-e4 |
-e3 |
-e2 |
-e1 |
1 |
how these results were generated.
As the above link explains, the table was generated by a computer program from the laws of vector algebra, that is: non-equal vector bases anti-commute and equal vector bases square to scalars (+,- or 0 as required).
Even subalgebra G+4,0,0
By taking just the even grades (scalar,bivector and psudoscalar) we get a valid and closed algebra in its own right:
a*b |
b.e |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e1234 |
a.e |
e |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e1234 |
a.e12 |
e12 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e43 |
a.e31 |
e31 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e42 |
a.e23 |
e23 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e41 |
a.e41 |
e41 |
e42 |
-e43 |
e1234 |
-1 |
e12 |
e31 |
-e23 |
a.e42 |
e42 |
-e41 |
-e1234 |
e43 |
-e12 |
-1 |
e23 |
e31 |
a.e43 |
e43 |
-e1234 |
e41 |
-e42 |
-e31 |
-e23 |
-1 |
-e12 |
a.e1234 |
e1234 |
e43 |
e42 |
e41 |
-e23 |
e31 |
-e12 |
1 |
On earlier pages we found that G+2,0,0 is equivalent to complex numbers and G+3,0,0 is equivalent to quaternions so is there a pattern here? Is G+4,0,0 related to octonions? I have tried matching with octonions in the second table on this page but the signs are different.
G+4,0,0 |
octonion |
e |
1 |
e12 |
e1 |
e31 |
e2 |
e23 |
e3 |
e41 |
e4 |
e42 |
e5 |
e43 |
e6 |
e1234 |
e7 |
So I don't think this is octonion algebra. Can anyone help me with this?
Vectors square to +ve: G 3,1,0
This corresponds to normal 3 dimensional space with an additional dimension, which squares to -ve, making 4. It can be fully defined by the multiplication table as follows:
a*b |
b.e |
b.e1 |
b.e2 |
b.e3 |
b.e4 |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e123 |
b.e142 |
b.e134 |
b.e324 |
b.e1234 |
a.e |
e |
e1 |
e2 |
e3 |
e4 |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e123 |
e142 |
e134 |
e324 |
e1234 |
a.e1 |
e1 |
1 |
e12 |
-e31 |
-e41 |
e2 |
-e3 |
e123 |
e4 |
e142 |
-e134 |
-e23 |
-e42 |
e43 |
e1234 |
e324 |
a.e2 |
e2 |
-e12 |
1 |
e23 |
-e42 |
-e1 |
e123 |
e3 |
e142 |
-e4 |
e324 |
e31 |
e41 |
e1234 |
-e43 |
e134 |
a.e3 |
e3 |
e31 |
-e23 |
1 |
-e43 |
e123 |
e1 |
-e2 |
e134 |
e324 |
e4 |
-e12 |
e1234 |
-e41 |
e42 |
-e142 |
a.e4 |
e4 |
e41 |
e42 |
e43 |
-1 |
-e142 |
e134 |
e324 |
e4 |
-e2 |
e3 |
e1234 |
-e12 |
-e31 |
-e23 |
e123 |
a.e12 |
e12 |
-e2 |
e1 |
e123 |
-e142 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e3 |
-e4 |
e324 |
-e134 |
e43 |
a.e31 |
e31 |
e3 |
e123 |
-e1 |
e134 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e2 |
-e324 |
-e4 |
-e142 |
e42 |
a.e23 |
e23 |
e123 |
-e3 |
e2 |
e324 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e1 |
e134 |
e142 |
-e4 |
e41 |
a.e41 |
e41 |
-e4 |
e142 |
e134 |
-e1 |
e42 |
-e43 |
-e1234 |
1 |
-e12 |
-e31 |
e324 |
-e2 |
e3 |
-e123 |
e23 |
a.e42 |
e42 |
e142 |
e4 |
e324 |
e2 |
-e41 |
-e1234 |
e43 |
e12 |
1 |
-e23 |
-e134 |
-e1 |
e123 |
e3 |
-e31 |
a.e43 |
e43 |
-e134 |
e324 |
-e4 |
-e3 |
-e1234 |
e41 |
-e42 |
e31 |
e23 |
1 |
-e142 |
-e123 |
-e1 |
e2 |
e12 |
a.e123 |
e123 |
-e23 |
-e31 |
-e12 |
-e1234 |
e3 |
e2 |
e1 |
-e324 |
e134 |
e142 |
-1 |
-e43 |
-e42 |
-e41 |
e4 |
a.e142 |
e142 |
-e42 |
e41 |
-e1234 |
-e12 |
-e4 |
e324 |
-e134 |
-e2 |
-e1 |
e123 |
-e43 |
1 |
-e23 |
e31 |
-e3 |
a.e134 |
e134 |
e43 |
-e1234 |
-e41 |
-e31 |
-e324 |
-e4 |
e142 |
e3 |
-e123 |
-e1 |
e42 |
e23 |
1 |
-e12 |
-e2 |
a.e324 |
e324 |
-e1234 |
-e43 |
e42 |
-e23 |
e134 |
e142 |
-e4 |
e123 |
e3 |
e2 |
e41 |
-e31 |
e12 |
1 |
-e1 |
a.e1234 |
e1234 |
-e324 |
-e134 |
e142 |
-e123 |
e43 |
e42 |
e41 |
e23 |
-e31 |
e12 |
-e4 |
e3 |
e2 |
e1 |
-1 |
This is similar to the G 4,0,0 table above, except the entries with blue background are inverted.
Even subalgebra G+3,1,0
By taking just the even grades (scalar,bivector and psudoscalar) we get a valid and closed algebra in its own right:
a*b |
b.e |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e1234 |
a.e |
e |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e1234 |
a.e12 |
e12 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e43 |
a.e31 |
e31 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e42 |
a.e23 |
e23 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e41 |
a.e41 |
e41 |
e42 |
-e43 |
e1234 |
1 |
-e12 |
-e31 |
e23 |
a.e42 |
e42 |
-e41 |
-e1234 |
e43 |
e12 |
1 |
-e23 |
-e31 |
a.e43 |
e43 |
-e1234 |
e41 |
-e42 |
e31 |
e23 |
1 |
e12 |
a.e1234 |
e1234 |
e43 |
e42 |
e41 |
e23 |
-e31 |
e12 |
-1 |
Vectors square to +ve: G 3,0,1
This corresponds to normal 3 dimensional space with an additional dimension, which squares to zero, making 4. It can be fully defined by the multiplication table as follows:
a*b |
b.e |
b.e1 |
b.e2 |
b.e3 |
b.e4 |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e123 |
b.e142 |
b.e134 |
b.e324 |
b.e1234 |
a.e |
e |
e1 |
e2 |
e3 |
e4 |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e123 |
e142 |
e134 |
e324 |
e1234 |
a.e1 |
e1 |
1 |
e12 |
-e31 |
-e41 |
e2 |
-e3 |
e123 |
e4 |
e142 |
-e134 |
-e23 |
-e42 |
e43 |
e1234 |
e324 |
a.e2 |
e2 |
-e12 |
1 |
e23 |
-e42 |
-e1 |
e123 |
e3 |
e142 |
-e4 |
e324 |
e31 |
e41 |
e1234 |
-e43 |
e134 |
a.e3 |
e3 |
e31 |
-e23 |
1 |
-e43 |
e123 |
e1 |
-e2 |
e134 |
e324 |
e4 |
-e12 |
e1234 |
-e41 |
e42 |
-e142 |
a.e4 |
e4 |
e41 |
e42 |
e43 |
0 |
-e142 |
e134 |
e324 |
0 |
0 |
0 |
e1234 |
0 |
0 |
0 |
0 |
a.e12 |
e12 |
-e2 |
e1 |
e123 |
-e142 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e3 |
-e4 |
e324 |
-e134 |
e43 |
a.e31 |
e31 |
e3 |
e123 |
-e1 |
e134 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e2 |
-e324 |
-e4 |
-e142 |
e42 |
a.e23 |
e23 |
e123 |
-e3 |
e2 |
e324 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e1 |
e134 |
e142 |
-e4 |
e41 |
a.e41 |
e41 |
-e4 |
e142 |
e134 |
0 |
e42 |
-e43 |
-e1234 |
0 |
0 |
0 |
e324 |
0 |
0 |
0 |
0 |
a.e42 |
e42 |
e142 |
e4 |
e324 |
0 |
-e41 |
-e1234 |
e43 |
0 |
0 |
0 |
-e134 |
0 |
0 |
0 |
0 |
a.e43 |
e43 |
-e134 |
e324 |
-e4 |
0 |
-e1234 |
e41 |
-e42 |
0 |
0 |
0 |
-e142 |
0 |
0 |
0 |
0 |
a.e123 |
e123 |
-e23 |
-e31 |
-e12 |
-e1234 |
e3 |
e2 |
e1 |
-e324 |
e134 |
e142 |
-1 |
-e43 |
-e42 |
-e41 |
e4 |
a.e142 |
e142 |
-e42 |
e41 |
-e1234 |
0 |
-e4 |
e324 |
-e134 |
0 |
0 |
0 |
-e43 |
0 |
0 |
0 |
0 |
a.e134 |
e134 |
e43 |
-e1234 |
-e41 |
0 |
-e324 |
-e4 |
e142 |
0 |
0 |
0 |
e42 |
0 |
0 |
0 |
0 |
a.e324 |
e324 |
-e1234 |
-e43 |
e42 |
0 |
e134 |
e142 |
-e4 |
0 |
0 |
0 |
e41 |
0 |
0 |
0 |
0 |
a.e1234 |
e1234 |
-e324 |
-e134 |
e142 |
0 |
e43 |
e42 |
e41 |
0 |
0 |
0 |
-e4 |
0 |
0 |
0 |
0 |
how these results were generated.
As the above link explains, the table was generated by a computer program from the laws of vector algebra, that is: non-equal vector bases anti-commute and equal vector bases square to scalars (+,- or 0 as required).
Even subalgebra G+3,0,1
By taking just the even grades (scalar,bivector and psudoscalar) we get a valid and closed algebra in its own right:
a*b |
b.e |
b.e12 |
b.e31 |
b.e23 |
b.e41 |
b.e42 |
b.e43 |
b.e1234 |
a.e |
e |
e12 |
e31 |
e23 |
e41 |
e42 |
e43 |
e1234 |
a.e12 |
e12 |
-1 |
e23 |
-e31 |
-e42 |
e41 |
-e1234 |
e43 |
a.e31 |
e31 |
-e23 |
-1 |
e12 |
e43 |
-e1234 |
-e41 |
e42 |
a.e23 |
e23 |
e31 |
-e12 |
-1 |
-e1234 |
-e43 |
e42 |
e41 |
a.e41 |
e41 |
e42 |
-e43 |
e1234 |
0 |
0 |
0 |
0 |
a.e42 |
e42 |
-e41 |
-e1234 |
e43 |
0 |
0 |
0 |
0 |
a.e43 |
e43 |
-e1234 |
e41 |
-e42 |
0 |
0 |
0 |
0 |
a.e1234 |
e1234 |
e43 |
e42 |
e41 |
0 |
0 |
0 |
0 |
This algebra is equivalent to the algebra of dual quaternions as explained on this page. The dimensions are related as follows:
G+ 3,0,1 |
dual quaternion |
e |
1 |
e12 |
i |
e31 |
j |
e23 |
k |
e41 |
kε |
e42 |
jε |
e43 |
iε |
e1234 |
1ε |
This site may have errors. Don't use for critical systems.