Maths - Rotations using Matrix - Samples in 90 degree steps

In order to try to explain things and give some examples we can try I thought it might help to show the rotations for a finite subset of the rotation group. We will use the set of rotations of a cube onto itself, this is a permutation group which gives 24 possible rotations as explaned on this page.

Heading applied first giving 4 possible orientations:

 

aeroplane

reference orientation

heading = 0
attitude = 0
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=1
cb=1
sh=0
sa=0
sb=0

 

1 0 0
0 1 0
0 0 1

aeroplane

rotate by 90 degrees about y axis

heading = 90 degrees
attitude = 0
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=1
sh=1
sa=0
sb=0

 

0 0 1
0 1 0
-1 0 0

aeroplane

rotate by 180 degrees about y axis

heading = 180 degrees
attitude = 0
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=1
cb=1
sh=0
sa=0
sb=0

 

-1 0 0
0 1 0
0 0 -1

aeroplane

rotate by 270 degrees about y axis

heading = -90 degrees
attitude = 0
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=1
sh=-1
sa=0
sb=0

 

0 0 -1
0 1 0
1 0 0

Then apply attitude +90 degrees for each of the above: (note: that if we went on to apply bank to these it would just rotate between these values, the straight up and streight down orientations are known as singularities because they can be fully defined without using the bank value)

aeroplane

heading = 0
attitude = 90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=0
cb=1
sh=0
sa=1
sb=0

 

0 -1 0
1 0 0
0 0 1

aeroplane

heading = 90 degrees
attitude = 90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=0
cb=1
sh=1
sa=1
sb=0

 

0 0 1
1 0 0
0 1 0

aeroplane

heading = 180 degrees
attitude = 90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=0
cb=1
sh=0
sa=1
sb=0

0 1 0
1 0 0
0 0 -1

aeroplane

heading = -90 degrees
attitude = 90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=0
cb=1
sh=-1
sa=1
sb=0

 

0 0 -1
1 0 0
0 -1 0

Or instead apply attitude -90 degrees (also a singularity):

aeroplane

heading = 0
attitude = -90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=0
cb=1
sh=0
sa=-1
sb=0

 

0 1 0
-1 0 0
0 0 1

aeroplane

heading = 90 degrees
attitude = -90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=0
cb=1
sh=1
sa=-1
sb=0

 

0 0 1
-1 0 0
0 -1 0

aeroplane

heading = 180 degrees
attitude = -90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=0
cb=1
sh=0
sa=-1
sb=0

 

0 -1 0
-1 0 0
0 0 -1

aeroplane

heading = -90 degrees
attitude = -90 degrees
bank = 0

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=0
cb=1
sh=-1
sa=-1
sb=0

 

0 0 -1
-1 0 0
0 1 0

Normally we dont go beond attitude + or - 90 degrees because thes are singularities, instead apply bank +90 degrees:

aeroplane

heading = 0
attitude = 0
bank = 90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=1
cb=0
sh=0
sa=0
sb=1

 

1 0 0
0 0 -1
0 1 0

aeroplane

heading = 90 degrees
attitude = 0
bank = 90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=0
sh=1
sa=0
sb=1

 

0 1 0
0 0 -1
-1 0 0

aeroplane

heading = 180 degrees
attitude = 0
bank = 90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=1
cb=0
sh=0
sa=0
sb=1

-1 0 0
0 0 -1
0 -1 0

 

aeroplane

heading = -90 degrees
attitude = 0
bank = 90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=0
sh=-1
sa=0
sb=1

 

0 -1 0
0 0 -1
1 0 0

Apply bank +180 degrees:

aeroplane

heading = 0
attitude = 0
bank = 180 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=1
cb=-1
sh=0
sa=0
sb=0

 

1 0 0
0 -1 0
0 0 -1

aeroplane

heading = 90 degrees
attitude = 0
bank = 180 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=-1
sh=1
sa=0
sb=0

 

0 0 -1
0 -1 0
-1 0 0

aeroplane

heading = 180 degrees
attitude = 0
bank = 180 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=1
cb=-1
sh=0
sa=0
sb=0

 

-1 0 0
0 -1 0
0 0 1

aeroplane

heading = -90 degrees
attitude = 0
bank = 180 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=-1
sh=-1
sa=0
sb=0

 

0 0 1
0 -1 0
1 0 0

Apply bank -90 degrees:

aeroplane

heading = 0
attitude = 0
bank = -90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=1
ca=1
cb=0
sh=0
sa=0
sb=-1

 

1 0 0
0 0 1
0 -1 0

aeroplane

heading = 90 degrees
attitude = 0
bank = -90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=0
sh=1
sa=0
sb=-1

 

0 -1 0
0 0 1
-1 0 0

aeroplane

heading = 180 degrees
attitude = 0
bank = -90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=-1
ca=1
cb=0
sh=0
sa=0
sb=-1

-1 0 0
0 0 1
0 1 0

 

aeroplane

heading = -90 degrees
attitude = 0
bank = -90 degrees

ch*ca -ch*sa*cb + sh*sb ch*sa*sb + sh*cb
sa ca*cb -ca*sb
-sh*ca sh*sa*cb + ch*sb - sh*sa*sb + ch*cb

ch=0
ca=1
cb=0
sh=-1
sa=0
sb=-1

 

0 1 0
0 0 1
1 0 0

 

 

     

aeroplane

reference orientation

1 0 0
0 1 0
0 0 1

 

aeroplane

rotate by 90 degrees about x axis

1 0 0
0 0 -1
0 1 0

 

aeroplane

rotate by 180 degrees about x axis

1 0 0
0 -1 0
0 0 -1

 

aeroplane

rotate by 270 degrees about x axis

1 0 0
0 0 1
0 -1 0

 

   

aeroplane

rotate by 90 degrees about z axis

0 1 0
-1 0 0
0 0 1

 

aeroplane

rotate by 90 degrees about y axis

0 0 -1
0 1 0
1 0 0

 

     
 

aeroplane

rotate by 180 degrees about z axis

-1 0 0
0 -1 0
0 0 1

 

 

aeroplane

rotate by 180 degrees about y axis

-1 0 0
0 1 0
0 0 -1

 

     

aeroplane

rotate by 270 degrees about z axis

0 -1 0
1 0 0
0 0 1

 

   

aeroplane

rotate by 270 degrees about y axis

0 0 1
0 1 0
-1 0 0

 

     

When we combine these rotations about the x,y and z axies in 90 degree multiples there are 24 possible orientations as shown here:

aeroplane

1 0 0
0 1 0
0 0 1

 

aeroplane

1 0 0
0 0 -1
0 1 0

 

aeroplane

1 0 0
0 -1 0
0 0 -1

 

aeroplane

1 0 0
0 0 1
0 -1 0

 

aeroplane

0 -1 0
1 0 0
0 0 1

 

aeroplane

0 0 1
1 0 0
0 1 0

 

aeroplane

0 1 0
1 0 0
0 0 -1

aeroplane

0 0 -1
1 0 0
0 -1 0

 

aeroplane

-1 0 0
0 -1 0
0 0 1

 

aeroplane

-1 0 0
0 0 -1
0 -1 0

 

aeroplane

-1 0 0
0 1 0
0 0 -1

 

aeroplane

-1 0 0
0 0 1
0 1 0

 

aeroplane

0 1 0
-1 0 0
0 0 1

 

aeroplane

0 0 1
-1 0 0
0 -1 0

 

aeroplane

0 -1 0
-1 0 0
0 0 -1

 

aeroplane

0 0 -1
-1 0 0
0 1 0

 

aeroplane

0 0 -1
0 1 0
1 0 0

 

aeroplane
0 1 0
0 0 1
1 0 0

 

aeroplane
0 0 1
0 -1 0
1 0 0

 

aeroplane
0 -1 0
0 0 -1
1 0 0

 

aeroplane

0 0 -1
0 -1 0
-1 0 0

 

aeroplane
0 -1 0
0 0 1
-1 0 0

 

aeroplane

0 0 1
0 1 0
-1 0 0

 

 

aeroplane
0 1 0
0 0 -1
-1 0 0

 

encoding of these rotations in quaternions is shown here.
encoding of these rotations in axis-angle is shown here.
encoding of these rotations in euler angles is shown here.


metadata block
see also:
Correspondence about this page

Book Shop - Further reading.

Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them.

cover Mathematics for 3D game Programming - Includes introduction to Vectors, Matrices, Transforms and Trigonometry. (But no euler angles or quaternions). Also includes ray tracing and some linear & rotational physics also collision detection (but not collision response).

Other Math Books

Terminology and Notation

Specific to this page here:

 

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.