Prerequisites
The concepts are explained here:
public final void invert(Matrix4d m1) { m00 = m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33; m01 = m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33; m02 = m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33; m03 = m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23; m10 = m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33; m11 = m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33; m12 = m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33; m13 = m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23; m20 = m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33; m21 = m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33; m22 = m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33; m23 = m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23; m30 = m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32; m31 = m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32; m32 = m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32; m33 = m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22; scale(1/m1.determinant()); } public double determinant() { double value; value = m03*m12*m21*m30 - m02*m13*m21*m30 - m03*m11*m22*m30 + m01*m13*m22*m30+ m02*m11*m23*m30 - m01*m12*m23*m30 - m03*m12*m20*m31 + m02*m13*m20*m31+ m03*m10*m22*m31 - m00*m13*m22*m31 - m02*m10*m23*m31 + m00*m12*m23*m31+ m03*m11*m20*m32 - m01*m13*m20*m32 - m03*m10*m21*m32 + m00*m13*m21*m32+ m01*m10*m23*m32 - m00*m11*m23*m32 - m02*m11*m20*m33 + m01*m12*m20*m33+ m02*m10*m21*m33 - m00*m12*m21*m33 - m01*m10*m22*m33 + m00*m11*m22*m33; return value; }
The above program is valid for a general 4×4 matrix which will work in all circumstances but when the matrix is being used to represent a combined rotation and translation (as described on this page) then the matrix carries a lot of redundant information. So if we want to speed up the code on this page then, for this case only, we can take advantage of this redundant information.
So for a combined rotation and translation then we should be able to combine these but with some compensation for the rotation of the translation direction.
The following calculator allows you to calculate the inverse for a 4×4 matrix. Enter the values into the matrix and then press "calc inverse " to display the result:
public final void invert(Matrix4d m1) { m00 = m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33; m01 = m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33; m02 = m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33; m03 = m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23; m10 = m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33; m11 = m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33; m12 = m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33; m13 = m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23; m20 = m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33; m21 = m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33; m22 = m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33; m23 = m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23; m30 = m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32; m31 = m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32; m32 = m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32; m33 = m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22; scale(1/m1.determinant()); } public double determinant() { double value; value = m03*m12*m21*m30 - m02*m13*m21*m30 - m03*m11*m22*m30 + m01*m13*m22*m30+ m02*m11*m23*m30 - m01*m12*m23*m30 - m03*m12*m20*m31 + m02*m13*m20*m31+ m03*m10*m22*m31 - m00*m13*m22*m31 - m02*m10*m23*m31 + m00*m12*m23*m31+ m03*m11*m20*m32 - m01*m13*m20*m32 - m03*m10*m21*m32 + m00*m13*m21*m32+ m01*m10*m23*m32 - m00*m11*m23*m32 - m02*m11*m20*m33 + m01*m12*m20*m33+ m02*m10*m21*m33 - m00*m12*m21*m33 - m01*m10*m22*m33 + m00*m11*m22*m33; return value; }
metadata block |
|
see also: |
|
Correspondence about this page |
|
Book Shop - Further reading. Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them. |
|
Terminology and Notation Specific to this page here: |
|
This site may have errors. Don't use for critical systems.
Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.