Maths - Cayley Table - 16D

On this page we will generate various 16 dimensional Cayley tables using combinations of the following methods:

This continues the process started on this page and continued on this page, in the 4D case we saw that the Clifford and Cayley-Dickson were identical, when we doubled up to 8D we saw that the algebras started to diverge with the Clifford algebras being associative and the Cayley-Dickson having a conjugate (and therefore an inverse). On this page we double up again and the properties of the Cayley-Dickson algebras further degrade, no longer having an inverse.

The aim is to look for correspondences between the various types of algebras. I need to do more analysis to find the overlaps between these classes of algebras (which algebras are isomorphic).

As we have seen on this page the type of each entry will be common for all these methods so we only need to compare the sign. So to make the comparison clearer on the page we will only show the sign and colour code the entries so that the pattern will show:

16D Cayley-Dickson Algebras

D⊗D⊗D⊗D

D⊗D⊗D⊗C
+ + + + + + + + + + + + + + + +
+ + + + + + - - + + - - - - + +
+ - + - + + + + + + + + - - - -
+ - + - + + - - + + - - - - + +
+ - - - + - - - + + + + + + + +
+ - - - + - + + + + + + - - - -
+ + - + + - - - + - + - - + - +
+ + - + + - + + + - + - - + - +
+ - - - - - - - + - - - - - - -
+ - - - - - + + + - + + + + - -
+ + - + - - - - + - - - + + + +
+ + - + - - + + + - + + + + - -
+ + + + - + + + + - - - - - - -
+ + + + - + - - + - - - + + + +
+ - + - - + + + + + - + + - + -
+ - + - - + - - + + - + + - + -
+ + + + + + + + + + + + + + + +
+ - + - + - - + + - - + - + + -
+ - + - + + + + + + + + - - - -
+ + + + + - - + + - - + - + + -
+ - - - + - - - + + + + + + + +
+ + - + + + + - + - + - - + - +
+ + - + + - - - + - + - - + - +
+ - - - + + + - + + + + - - - -
+ - - - - - - - + - - - - - - -
+ + - + - + + - + + + - + - - +
+ + - + - - - - + - - - + + + +
+ - - - - + + - + + + - + - - +
+ + + + - + + + + - - - - - - -
+ - + - - - - + + + - + + - + -
+ - + - - + + + + + - + + - + -
+ + + + - - - + + - - - + + + +

D⊗D⊗C⊗C

D⊗C⊗C⊗C
+ + + + + + + + + + + + + + + +
+ - + - + - - + + - - + - + + -
+ - - + + + - - + + - - - - + +
+ + - - + - + - + - + - - + - +
+ - - - + - - - + + + + + + + +
+ + - + + + + - + - + - - + - +
+ + + - + - + + + - - + - + + -
+ - + + + + - + + + - - - - + +
+ - - - - - - - + - - - - - - -
+ + - + - + + - + + + - + - - +
+ + + - - - + + + - + + + + - -
+ - + + - + - + + + - + + - + -
+ + + + - + + + + - - - - - - -
+ - + - - - - + + + - + + - + -
+ - - + - + - - + + + - + - - +
+ + - - - - + - + - + + + + - -
+ + + + + + + + + + + + + + + +
+ - + - + - - + + - - + - + + -
+ - - + + + - - + + - - - - + +
+ + - - + - + - + - + - - + - +
+ - - - - + + + + + + + - - - -
+ + - + - - - + + - + - + - + -
+ + + - - + - - + - - + + - - +
+ - + + - - + - + + - - + + - -
+ - - - - - - - + - - - - - - -
+ + - + - + + - + + + - + - - +
+ + + - - - + + + - + + + + - -
+ - + + - + - + + + - + + - + -
+ + + + + - - - + - - - + + + +
+ - + - + + + - + + - + - + - +
+ - - + + - + + + + + - - + + -
+ + - - + + - + + - + + - - + +

C⊗C⊗C⊗C = sedenion

 
+ + + + + + + + + + + + + + + +
+ - + - + - - + + - - + - + + -
+ - - + + + - - + + - - - - + +
+ + - - + - + - + - + - - + - +
+ - - - - + + + + + + + - - - -
+ + - + - - - + + - + - + - + -
+ + + - - + - - + - - + + - - +
+ - + + - - + - + + - - + + - -
+ - - - - - - - - + + + + + + +
+ + - + - + + - - - - + - + + -
+ + + - - - + + - + - - - - + +
+ - + + - + - + - - + - - + - +
+ + + + + - - - - + + + - - - -
+ - + - + + + - - - + - + - + -
+ - - + + - + + - - - + + - - +
+ + - - + + - + - + - - + + - -
 

how these results were generated.

As the above link explains, the table was generated by a computer program from the (modified) Caley-Dickson doubling process.

16D Clifford Algebras

That is, Clifford algebras based on 4 vector dimensions, I have tried the combinations of these dimensions squaring to positive and negative.

G 4,0,0

G 3,1,0
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - + - - + - + + - + - - + - +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - + - + - + - + - + - + - + -
+ + + + + + + + + + + + + + + +
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + - - + + - - + + - - + + - -
+ - - + + - - + + - - + + - - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + - - - - + + + + - - - - + +
+ - - + - + + - + - - + - + + -
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - + - - + - + + - + - - + - +
+ + + + - - - - + + + + - - - -

G 2,2,0

G 1,3,0
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -

G 0,4,0

 
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - - + + - + - - +
+ + - - - - + + - - + + + + - -
+ + + + - - - - - - - - + + + +
+ - + - - + - + - + - + + - + -
+ + + + + + + + - - - - - - - -
+ - + - + - + - - + - + - + - +
+ - - + + - - + - + + - - + + -
+ + - - + + - - - - + + - - + +
 

how these results were generated.

As the above link explains, the table was generated by a computer program from the ordering of bases.

Even Subalgebras of 32D Clifford Algebras

That is, An even subalgebra of Clifford algebras based on 5 vector dimensions.

G+ 5,0,0

G+ 4,1,0
+ + + + + + + + + + + + + + + +
+ - - + - + + - - + + - + - - +
+ + - - - - + + - - + + + + - -
+ - + - + - + - + - + - + - + -
+ + + + - - - - - - - - + + + +
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - + - - + - + - + - + + - + -
+ + + + + + + + - - - - - - - -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ - + - + - + - - + - + - + - +
+ + + + - - - - + + + + - - - -
+ - - + + - - + - + + - - + + -
+ + - - + + - - - - + + - - + +
+ - + - - + - + + - + - - + - +
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - + - - + - + + - + - - + - +

G+ 3,2,0

G+ 2,3,0
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - + - + - + - + - + - + - + -
+ + + + + + + + + + + + + + + +
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + - - + + - - + + - - + + - -
+ - - + + - - + + - - + + - - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + - - - - + + + + - - - - + +
+ - - + - + + - + - - + - + + -
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - + - - + - + + - + - - + - +
+ + + + - - - - + + + + - - - -
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +

G+ 1,4,0

G+ 0,5,0
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ + + + + + + + + + + + + + + +
+ - + - + - + - + - + - + - + -
+ - - + + - - + + - - + + - - +
+ + - - + + - - + + - - + + - -
+ - - + - + + - + - - + - + + -
+ + - - - - + + + + - - - - + +
+ + + + - - - - + + + + - - - -
+ - + - - + - + + - + - - + - +
+ - - + - + + - - + + - + - - +
+ + - - - - + + - - + + + + - -
+ + + + - - - - - - - - + + + +
+ - + - - + - + - + - + + - + -
+ + + + + + + + - - - - - - - -
+ - + - + - + - - + - + - + - +
+ - - + + - - + - + + - - + + -
+ + - - + + - - - - + + - - + +

metadata block
see also:

 

Correspondence about this page

Book Shop - Further reading.

Where I can, I have put links to Amazon for books that are relevant to the subject, click on the appropriate country flag to get more details of the book or to buy it from them.

flag flag flag flag flag flag Deep Down Things: The Breathtaking Beauty of Particle Physics - If you dont want any equations then this is a good and readable introduction to quantum theory and related mathematics such as Lie groups, Gauge Theory, etc.

 

Other Math Books

Terminology and Notation

Specific to this page here:

 

This site may have errors. Don't use for critical systems.

Copyright (c) 1998-2023 Martin John Baker - All rights reserved - privacy policy.