Dual Quaternions

Dual Numbers

$$
\begin{gather*}
s=a+\varepsilon b \tag{1}\\
\qquad s^{\dagger}=a-\varepsilon b \tag{2}\\
\text { where } \varepsilon \neq 0, \text { but }^{2}=0 \tag{3}\\
s s^{\dagger}=(a+\varepsilon b)(a-\varepsilon b)=a^{2}
\end{gather*}
$$

Dual Quaternion

$$
\begin{equation*}
Q=r+\varepsilon d \tag{4}
\end{equation*}
$$

Conjugate

There are multiple definitions for the conjugate of a dual quaternion.

$$
\begin{align*}
& \boldsymbol{Q}^{\dagger}=\boldsymbol{r}^{\dagger}+\varepsilon \boldsymbol{d}^{\dagger} \\
& \boldsymbol{Q}_{\varepsilon}=r-\varepsilon \boldsymbol{d} \tag{5}\\
& \boldsymbol{Q}_{\varepsilon}^{\dagger}=r^{\dagger}-\varepsilon \boldsymbol{d}^{\dagger}
\end{align*}
$$

The first definition is the one that will be useful to us. Recall that for regular (not dual) quaternions, we have

$$
\begin{equation*}
(\boldsymbol{p} \boldsymbol{q})^{\dagger}=\boldsymbol{q}^{\dagger} \boldsymbol{p}^{\dagger} \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
& Q_{1} Q_{2}=\left(\boldsymbol{r}_{1}^{\dagger}+\varepsilon \boldsymbol{d}_{1}\right)\left(\boldsymbol{r}_{2}^{\dagger}+\varepsilon \boldsymbol{d}_{2}\right) \\
& =\boldsymbol{r}_{1}^{\dagger} \boldsymbol{r}_{2}^{\dagger}+\varepsilon \boldsymbol{r}_{1}^{\dagger} \boldsymbol{d}_{2}+\varepsilon \boldsymbol{d}_{1} \boldsymbol{r}_{2}^{\dagger} \\
& =\boldsymbol{r}_{1}^{\dagger} \boldsymbol{r}_{2}^{\dagger}+\varepsilon\left(\boldsymbol{r}_{1}^{\dagger} \boldsymbol{d}_{2}+\boldsymbol{d}_{1} \boldsymbol{r}_{2}^{\dagger}\right) \\
& \boldsymbol{Q}_{2}^{\dagger} \boldsymbol{Q}_{1}^{\dagger}=\left(\boldsymbol{r}_{2}^{\dagger}+\varepsilon \boldsymbol{d}_{2}^{*}\right)\left(\boldsymbol{r}_{1}^{\dagger}+\varepsilon \boldsymbol{d}_{1}^{\dagger}\right) \tag{7}\\
& =\boldsymbol{r}_{2}^{\dagger} \boldsymbol{r}_{1}^{\dagger}+\varepsilon \boldsymbol{r}_{2}^{\dagger} \boldsymbol{d}_{1}^{\dagger}+\varepsilon \boldsymbol{d}_{2}^{\dagger} \boldsymbol{r}_{1}^{\dagger} \\
& =\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)^{\dagger}+\varepsilon\left(\boldsymbol{d}_{1} \boldsymbol{r}_{2}\right)^{\dagger}+\varepsilon\left(\boldsymbol{r}_{1} \boldsymbol{d}_{2}\right)^{\dagger} \\
& =\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)^{\dagger}+\varepsilon\left(\boldsymbol{d}_{1} \boldsymbol{r}_{2}+\boldsymbol{r}_{1} \boldsymbol{d}_{2}\right)^{\dagger}
\end{align*}
$$

So

$$
\begin{equation*}
\left(\boldsymbol{Q}_{1} \boldsymbol{Q}_{2}\right)^{\dagger}=\boldsymbol{Q}_{2}^{\dagger} \boldsymbol{Q}_{1}^{\dagger} \tag{8}
\end{equation*}
$$

Dual Quaternion for a Vector

$$
\begin{equation*}
V=1+\varepsilon v \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
V^{\dagger}=v^{\dagger}=-V \tag{10}
\end{equation*}
$$

Dual Quaternion for Rotation then Translation

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{r}+\varepsilon \frac{1}{2} \boldsymbol{t} \boldsymbol{r} \quad \boldsymbol{Q}_{\varepsilon}^{\dagger}=\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2}(\boldsymbol{t} \boldsymbol{r})^{\dagger}=\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{r}^{\dagger} \boldsymbol{t}^{\dagger} \tag{11}
\end{equation*}
$$

where $\mathbf{q}_{\mathbf{r}}$ is the familiar rotation quaternion, and \mathbf{t} is the translation vector. Applying this transformation to a vector gives:

$$
\begin{align*}
\boldsymbol{Q} \boldsymbol{V} \boldsymbol{Q}^{\dagger} & =\left(\boldsymbol{r}+\varepsilon \frac{1}{2} \boldsymbol{t} \boldsymbol{r}\right)(\mathbf{1}+\varepsilon \boldsymbol{v})\left(\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{r}^{\dagger} \boldsymbol{t}^{\dot{\dagger}}\right) \\
& =\left(\boldsymbol{r}+\varepsilon \boldsymbol{r} \boldsymbol{v}+\varepsilon \frac{1}{2} \boldsymbol{t} \boldsymbol{r}\right)\left(\boldsymbol{r}^{\dot{\prime}}-\varepsilon \frac{1}{2} \boldsymbol{r}^{\dagger} \boldsymbol{t}^{\dagger}\right) \\
& =\boldsymbol{r} \boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{r}^{\dagger} \boldsymbol{t}^{\dagger}+\varepsilon \boldsymbol{r} \boldsymbol{v} \boldsymbol{r}^{\dagger}+\varepsilon \frac{1}{2} \boldsymbol{t r} \boldsymbol{r}^{\dagger} \tag{12}\\
& =\mathbf{1}-\varepsilon \frac{1}{2} \boldsymbol{t}^{\dagger}+\varepsilon \boldsymbol{r} \boldsymbol{v} \boldsymbol{r}^{\dagger}+\varepsilon \frac{1}{2} \boldsymbol{t}
\end{align*}
$$

But \mathbf{t} is a vector, so

$$
\begin{gather*}
-\boldsymbol{t}^{\dagger}=+\boldsymbol{t} \tag{13}\\
\boldsymbol{Q V} \boldsymbol{Q}^{\dagger}=\mathbf{1}+\varepsilon\left(\boldsymbol{r} v \boldsymbol{r}^{\dagger}+\boldsymbol{t}\right) \tag{14}
\end{gather*}
$$

which has the form of a rotation followed by a translation.

Dual Quaternion for Translation then Rotation

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{r}+\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t} \quad \boldsymbol{Q}_{\varepsilon}^{\dagger}=\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2}(\boldsymbol{r} \boldsymbol{t})^{\dagger}=\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{t}^{\dagger} \boldsymbol{r}^{\dagger} \tag{15}
\end{equation*}
$$

where $\mathbf{q}_{\mathbf{r}}$ is the familiar rotation quaternion, and \mathbf{d} is the translation vector. Applying this transformation to a vector gives:

$$
\begin{align*}
\boldsymbol{Q V} \boldsymbol{Q}^{\dagger} & =\left(\boldsymbol{r}+\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t}\right)(\mathbf{1}+\varepsilon \boldsymbol{v})\left(\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{t}^{\dagger} \boldsymbol{r}^{\dagger}\right) \\
& =\left(\boldsymbol{r}+\varepsilon \boldsymbol{r} \boldsymbol{v}+\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t}\right)\left(\boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{t}^{\dagger} \boldsymbol{r}^{\dagger}\right) \\
& =\boldsymbol{r} \boldsymbol{r}^{\dagger}-\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t}^{\dagger} \boldsymbol{r}^{\dagger}+\varepsilon \boldsymbol{r} \boldsymbol{v} \boldsymbol{r}^{\dagger}+\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{r} \boldsymbol{r}^{\dagger} \tag{16}\\
& =\mathbf{1}-\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t}^{\dagger} \boldsymbol{r}^{\dagger}+\varepsilon \boldsymbol{r} \boldsymbol{v} \boldsymbol{r}^{\dagger}+\varepsilon \frac{1}{2} \boldsymbol{r} \boldsymbol{t} \boldsymbol{r}^{\dagger} \\
& =\mathbf{1}+\varepsilon \boldsymbol{r}\left(\frac{1}{2} \boldsymbol{t}-\frac{1}{2} \boldsymbol{t}^{\dagger}+\boldsymbol{v}\right) \boldsymbol{r}^{\dagger}
\end{align*}
$$

But \mathbf{t} is a vector, so

$$
\begin{gather*}
-t^{\dagger}=+\boldsymbol{t} \tag{17}\\
\boldsymbol{Q V} \boldsymbol{Q}^{\dagger}=1+\varepsilon \boldsymbol{r}(\boldsymbol{v}+\boldsymbol{t}) \boldsymbol{r}^{\dagger} \tag{18}
\end{gather*}
$$

which has the form of a translation followed by a rotation. Finally, if d is the dual part of the quaternion,

$$
\begin{align*}
& \boldsymbol{d}=\frac{1}{2} r \boldsymbol{t} \\
& r^{\dagger} \boldsymbol{d}=\frac{1}{2} r^{\dagger} r \boldsymbol{t} \tag{19}\\
& r^{\dagger} \boldsymbol{d}=\frac{-}{2} \boldsymbol{t}
\end{align*}
$$

So

$$
\begin{equation*}
t=2 r^{\dagger} d \tag{20}
\end{equation*}
$$

Using Dual Quaternions in Place of Vectors

In my application, most of the positions (vectors) I deal with are positions of objects. Since every object has a co-ordinate system associated with it (which may have been rotated), I find it easier to use only dual quaternions, instead of mixing dual quaternions and vectors.
Consider the case where two transforms in a row are applied to a vector.

$$
\begin{equation*}
\boldsymbol{Q}_{2} Q_{1} \boldsymbol{V} Q_{1}^{\dagger} \boldsymbol{Q}_{2}^{\dagger}=Q_{2} Q_{1} \boldsymbol{V}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{1}\right)^{\dagger} \tag{21}
\end{equation*}
$$

So applying the transform Q_{1} followed by the transform Q_{2} is equivalent to applying the combined transform $\mathrm{Q}_{1} \mathrm{Q}_{2}$. Or to look at it another way, we can consider Q_{2} as transforming Q_{1}. So if we represent an object's position and rotation by Q_{1}, then if we apply the transform Q_{2} to that, the result is:

$$
\begin{equation*}
Q_{1} \rightarrow Q_{2} Q_{1} \tag{22}
\end{equation*}
$$

Which means we have half as many operations to perform!

